Economics 113 Professor Spearot	
Spring 2014 – Final	
Name	

Introduction to Econometrics

ID

Final – 100 Points

You must answer all questions. Please write your name on every page. The exam is closed book and closed notes. You may use calculators, but no graphing calculators. No cell phones. Do not use your own scratch paper.

You must show your work to receive full credit

I have neither given nor received unauthorized aid on this examination, nor have I concealed any similar misconduct by others.

Signature_

Problem 1 (50 Points)

We wish to predict real wage outcomes using the following regression:

$$log(rw_{it}) = \beta_0 + \beta_1 college_i + \beta_2 female_i + \beta_3 black_i + \alpha_t + u_{it}$$

Here, rw_{it} is the real wage for respondent i interviewed in year t, $college_i$ takes on a value of 1 if respondent i is a college graduate (0 otherwise), $female_i$ takes a value of 1 if respondent i is female (0 otherwise), and $black_i$ takes on a value of 1 if respondent i is black (0 otherwise). The term α_t represents year fixed effects, which are suppressed in the following results:

. reg ln rw college female black i.year

Source	SS +	df	MS	Number of obs = 598475 F(9.598465) = 9167.91
Model Residual	25658.4537		850.9393	Prob > F = 0.0000 R-squared = 0.1212 Adj R-squared = 0.1212
Total	211762.788	598474 .3	53837908	Root MSE = .55765
ln_rw	-	Std. Err.	t P> t	[95% Conf. Interval]
college female black cons	.3899047 2447752	.0018827 .001444 .0024996 .0020319	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	<pre></pre>

a.) Please interpret <u>precisely</u> the coefficient on college. (10 Points)

b.) We wish to test whether there are any interactions between *female* and *black* and *college* using the following specification:

$$\log(rw_{it}) = \beta_0 + \beta_1 college_i + \beta_2 female_i + \beta_3 black_i + \beta_4 college_i \cdot female_i + \beta_5 college_i \cdot black_i + \alpha_t + u_{it}$$

The results from running this regression (again suppressing year estimates) are below:

. reg ln_rw college female college_female black college_black i.year

Source	SS	df	MS		umber of		598475 7504.87
Model Residual	25670.1273	11 2333 598463 .310	.64794	P R	rob > F -squared	= l =	0.0000 0.1212
Total	211762.788	598474 .353	837908		dj R-squ loot MSE		0.1212
ln_rw	Coef.			P> t	-	Conf. I	nterval]
college female college_female black college_blackcons	.3968689 2415216 0182506	.0026744 .0015945 .0037573 .0026832 .0073784	XXXXXXX XXXXXXX XXXXXXX XXXXXXXX	XXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXX XXXX	**************************************	XXXXXXX XXXXXXX XXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Which regression is preferred, the regression in '1a' or the regression here in '1b'? Please test this hypothesis at the 95% level, stating your null and alternative hypotheses. (10 points)

c.)	Please write the Stata code required to generate <code>college_female</code> and <code>college_black</code> , and provide a different command than in '1b' to estimate the specification with year fixed effects. (10 points)
d.)	Does the black-white wage gap depend on whether the respondent is college educated? Test this hypothesis at
	the 99% level, stating your null and alternative hypothesis. Show your work! (10 points)
e)	What is the precise difference in predicted wages between a black college-educated male and a white female
c .,	without a college degree? (10 points)

Problem 2 (50 Points)

a.) We now use our wage panel dataset from 1980-1987 to examine the determinants of annual hours worked:

$$hours_{it} = \beta_0 + \beta_1 educ_i + \beta_2 manu_{it} + \beta_3 union_{it} + \alpha_t + u_{it}$$

Here, $hours_{it}$ is annual hours worked for individual i in year t, $educ_i$ is the time-invariant education level of individual i, $manu_{it}$ equals 1 if individual i works in a manufacturing job in year t (0 otherwise), and $union_{it}$ equals 1 if individual i works in a union job in year t (0 otherwise). Note that manufacturing and union jobs are not mutually exclusive outcomes. Estimating this equation using Pooled OLS, we get the following.

. reg hours educ union manuf i.year

Source		df 			Number of obs F(10, 1189)	
Residual	25891174.6 422789266	10 2589 1189 3555	117.46 83.908		Prob > F R-squared	= 0.0000 = 0.0577
•	448680441				Adj R-squared Root MSE	
hours	Coef.		t	P> t	[95% Conf.	Interval]
educ	-23.3217		xxxxxx	xxxxxxx	xxxxxxxxxxxx	xxxxxxxx
union	-56.6942	42.35081	xxxxxx	xxxxxxx	xxxxxxxxxxx	xxxxxxxxx
manuf	60.6815	39.21068	xxxxxx	xxxxxxx	xxxxxxxxxxx	xxxxxxxxx
year						
1981	162.335	68.86171	xxxxxx	xxxxxxx	xxxxxxxxxxx	xxxxxxxx
1982	213.217	69.00531	xxxxxx	xxxxxxx	xxxxxxxxxxx	xxxxxxxx
1983	291.039	68.90454	xxxxxx	xxxxxxx	xxxxxxxxxxx	xxxxxxxxx
1984	315.447	69.11393	xxxxxx	xxxxxxx	xxxxxxxxxxx	xxxxxxxx
1985	358.572	68.91055	xxxxxx	xxxxxxx	xxxxxxxxxxx	xxxxxxxxx
1986	381.867	68.89213	xxxxxx	xxxxxxx	xxxxxxxxxxx	xxxxxxxxx
1987	454.073	69.04009	xxxxxx	xxxxxxx	*****	xxxxxxxxx
_cons	2230.84	130.5198	xxxxxx	.xxxxxxx	xxxxxxxxxxxx	xxxxxxxxx

Please construct and interpret a 95% confidence interval for the constant in this regression. (10 Points)

b.) I claim that being in a union has a significant effect on annual hours worked. Using the probability that I'm wrong? (10 Points)	ne results in '2a', what is
c.) Hours worked cannot be negative, though pooled OLS may yield negative values for p two techniques we can use to remedy this issue? (5 Points)	predictions. What are the
d.) We now augment the regression equation in '2a' to include individual fixed effects, α fixed effects. $hours_{it} = \beta_0 + \beta_2 manu_{it} + \beta_3 union_{it} + \alpha_i + u_{it}$, but removing the time
What happened to education, and why? (5 Points)	

e.) After initializing the panel dimension of the dataset, we estimate the model from '2d':

. xtreg hours union manuf, fe

Fixed-effects (Group variable:		ression		Number of Number of			
R-sq: within : between : overall :	= 0.0079			Obs per g	roup:		8.0
corr(u_i, Xb)	= 0.0402			F(2,1048) Prob > F			0.47 0.6247
hours	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
manu	43.92626	48.58498 46.45788 21.03889	*******	***************	xxxxx xxxxx	xxxxx xxxxx	**********
sigma_u sigma_e rho	470.32479	(fraction					
F test that all	u_i=0:	F(149, 1048) = 6	.50	Pı	rob >	F = 0.0000

Please interpret the coefficient on *manu*, and test whether it is significantly different from zero at the 95% level. Show your work! (10 points)

f.)	Again assuming that the panel dataset is already initialized, please write out the code to estimate the following:
	$\Delta hours_{it} = \beta_2 \Delta manu_{it} + \beta_3 \Delta union_{it} + \Delta u_{it}$
	How does the interpretation for the coefficient on manu change for this regression relative to 2d?
	Have a great summer!!!

Normal Distribution from -oo to Z

Z 0.00						0.06			0.09
0.0 0.5000									0.5359
0.1 0.5398									
0.2 0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3 0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4 0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5 0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6 0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7 0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8 0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9 0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0 0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1 0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2 0.8849									
1.3 0.9032									
1.4 0.9192									
1.5 0.9332									
1.6 0.9452									
1.7 0.9554									
1.8 0.9641									
1.9 0.9713									
2.0 0.9772									
2.1 0.9821									
2.2 0.9861									
2.3 0.9893									
2.4 0.9918 2.5 0.9938									
2.6 0.9953									
2.7 0.9965									
2.9 0.9981									
3.0 0.9987									
3.0 0.3307	0.3307	0.3307	0.3300	0.3300	0.3303	0.3303	0.9909	0.3330	0.3330

TABLE G.3b

5% Critical Values of the F Distribution

Numerator Degrees of Freedom											
	and the state of	1	.2	3	4	5	6	7	8	. 9.	10
	8	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83

Example: The 5% critical value for numerator df = 4 and large denominator $df (\infty)$ is 2.37.

Source: This table was generated using the Stata® function invFtail.